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Abstract 

Several scheduling strategies are analyzed in order to determine the most efficient 
means of scheduling aircraft when multiple runways are operational and the airport is 
operating at different utilization rates. The study compares simulation data for two 
and three runway scenarios to results from queuing theory for an M/D/n queue. The 
direction taken, however, is not to do a steady-state, or equilibrium, analysis since this 
is not the case during a rush period at a typical airport. Instead, a transient analysis of 
the delay per aircraft is performed. It is shown that the scheduling strategy that reduces 
the delay depends upon the density of the arrival traffic. For light traffic, scheduling 
aircraft to their preferred runways is sufficient; however, as the arrival rate increases, it 
becomes more important to separate traffic by weight class. Significant delay reduction 
is realized when aircraft that belong to the heavy and small weight classes are sent to 
separate runways with large aircraft put into the “best” landing slot. 

- L 

1 Introduction 

The analysis of aircraft scheduling techniques for airports with multiple runways are becom- 
ing more important with the evolution of new airport designs, such as Denver International 
(DIA), that have the capability to land several aircraft independently on several runways. 
Therefore, new techniques for scheduling to multiple runways are needed in order to improve 
upon the traditional First Come First Serve (FCFS) technique generdly employed. With 
the advent of the Center TRACON Automation System (CTAS), air traffic controllers will 
have a tool that gives them accurate aircraft state information that will assist them in their 
scheduling duties [l]. The intent of this paper is to present and compare several scheduling 
methods in order to show the best means to reduce the delay per aircraft. 

In a multiple runway airport, traffic from different directions is assigned a “preferred” 
runway based upon the geometric relation of the approach geometry to a runway. Previous 
effo&s by Vandevanne [2] have shown that significant delay reduction is possible for multiple 
runways if the aircraft are dlowed to crossover without penalty. Using steady-state queuing 
theory, one should realize an improvement in delay by a factor of approximately l /n  for n 
runways as compared to a single runway case with 1 - 1/n percent of the aircraft switching 
from their preferred runway. A “delay threshold” can be added in order to reduce the 
number of crossovers. The delay threshold is a lower bound upon which the delay on the 
alternate runway must be reduced in order for the aircraft to cross to that runway. As a 
result, there is a drop in the number of crossovers and a corresponding increase in the delay. 

The approach taken in this paper is to study different techniques for scheduling aircraft 
to multiple runways. Numerical simulation is used to determine the effectiveness of several 
simple runway allocations. These results are compared to results from queuing theory. 
Because the typical arrival rush at an airport is fairly short, we are interested in looking at 
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the transient state of the queue and how the waiting time or delay builds-up during a rush 
period. This simulates the queuing dynamics during a rush period at a typical airport which 
is initially operating with light arrival traffic. It is shown that the best method of allocating 
runways when the airport is operating either near or above capacity is to separate the heavy 
and small aircraft as much as possible. However, if the tr&c is light, it is sufficient to land 
the aircraft on their preferred runways. 

2 The Scheduling Problem 

The aircraft scheduling problem can be defined as a procedure which is “to plan automat- 
ically the most efficient landing order and to assign optimally spaced landing times to all 
arrivals, given the times the aircraft are actually arriving at the Air Route Traffic Control 
Center (ARTCC) ” [l]. This definition may sound modest, but there are some underlying 
attributes of the scheduling problem that make it very difficult. First is that the arrival 
times of the aircraft into the system are random. Theoretically and practically, the arrival 
times are modelled as a Poisson process. In practice, if one were to observe arrivals at 
an airport for a day, one would see that the number of arrivals varies throughout the day. 
There are periods of time where the arrival traffic is “light” and periods where the incoming 
traffic is so heavy that the airport is operating near or above capacity. The arrivals are still 
consistent with the Poisson process, but with a time varying arrival rate. 

A practical factor which is of extreme importance in scheduling is classification of 
aircraft into different weight classes, and the minimum separation between them. In practice 
we generally, deal with three weight classes which we describe as heavy, small, and large. 
The Federal Aviation Administration (FAA) has specified a “separation matrix” which gives 
required minimum distance separations between these classes of aircraft. These separations 
arise from the consideration of wake vortices, speed differences, etc. The nominal matrix 
usedis given below (with distances in n. mi.). 

H E S  
H 4 5 6  
L 3 3 4  
2 7 3 3 3  

This matrix changes depending upon winds, weather, etc. To find the proper separation 
for a pair of aircraft, one simply goes to the appropriate row for the leading aircraft then to 
the column for the weight class of the trailing aircraft. One converts the distances to times 
using the approach speeds of the aircraft. 
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3 Analytical Models 

In order to  predict the amount of delay that an aircraft can expect for a given traffic 
mix, arrival rate, and airport capacity, two standard queuing models are considered. The 
first model has deterministic service times, and the second considers service times that are 
exponentially distributed. Rather than restricting ourselves to a steady-state analysis, a 
study of the transient queue dynamics is performed. The motivation for doing a transient 
analysis is that in actual traffic the peak arrival rates may be short compared to the time 
required for the system to reach steady- state. The real benefits of an efficient scheduling 
technique are realized when the arrival traffic is heavy, and there are times where the peak 
arrival rate of aircraft is greater than the number that are able to land in a given time period. 
Secondly, the-arrival rate preceding the rush period is usually low enough that aircraft are 
sufficiently spaced, and the method of landing aircraft on their preferred runways will be 
more than adequate since aircraft are typically not delayed due to the large inter- arrival 
times between aircraft. 

3.1 Deterministic Service Times 

In constructing a mathematical model for the scheduling problem, one needs to make some 
simplifying assumptions. The first is that the arrivals are to be modelled according to 
a homogeneous Poisson process with an arrival rate, A. The Poisson process has a mean 
number of arrivals in the time period Et, t + At] equal to AAt. Furthermore, the inter-arrival 
times of the aircraft have an exponential distribution with a mean of 1 /X .  It is further 
assumed that each server has a constant service time, 2’’. This queuing system is then said 
to be M/D/n [3], where the “M” denotes that the inter-arrival times are “Markovian” or 
“memoryless,” the “D” denotes that the service times are “deterministic” or constant, and 
n servers are operating in parallel. All aircraft will share a common queue, unless specified 
otherwise. 

The service time may be taken to be constant by averaging the actual separation times 
within the separation matrix. This may be done since the traffic mix and the separation 
matrix we known quantities. By assigning a fixed service time to all aircraft in this manner, 
it is assumed that any delay results from the randomness of the arrival times. In order to 
calculate a service time (and hence a runway capacity) from the separation matrix one 
only needs to know the traffic mix and the separation matrix. The average service time is 
Ts = P,TSPm, P, = [PH PL PsIT is the traffic mix (PH, PL, and Ps are the probabilities 
that the aircraft is a heavy, large, or small respectively), S is the separation matrix. Let 
p represent the runway capacity. The capacity of a single runway is then p = l/T’,. For 
example, if the traffic mix is Pm = [.2.7 .1IT, and the aircraft have a common landing 
speed of 150 knots, then p = 43.5 ac/hr and T, = 82.8 sec. For analysis purposes, using 



this constant T, allows us to preserve the effects of different traffic mixes upon the delay in 
the system while still using the simplifying assumption of a constant deterministic service. 
An alternate approach which utilizes random service times is discussed in the next section. 
Whereas capacity is affected by the order of arrivals of various weight classes, one can safely 
assume that no major re-ordering of the landing times is possible (or desired.) To understand 
how the landing order affects capacity, consider landing all small aircraft, followed by the 
large and then the heavy aircraft. This will maximize the capacity, but will likely result in 
large delays for a large percentage of the aircraft in the stream [4]. 

In order to analyze the delay build-up during a rush period, one needs to study the 
transient probabilities of the queuing process. The time-varying equations are taken from 
Tijms [5] .  They are based upon the following observation: a customer in service at time t 
will have left service at time t + T,. The customers in the system at the time t + Ts will be 
those that entered during the increment T, as well as those that were in the queue at time 
t. 

Define A(T,) to be the number of arrivals in the interval [t, t+T,] (because we consider 
a Poisson process with a constant rate, thereis no time dependency). We write the number 
of arrivals as a function of the length of the interval since the Poisson process has the 
following property: for 0 5 s 5 t the random variable A(t)-A(s) is the number of arrivals 
in the interval [s, t], which may be written as A(t - s) [6]. Furthermore, let N ( t )  be the 
number in the system at time t, and Pj(t )  = P ( N ( t )  = j) denote the probability that j 
customers are in the system at time t. We will condition on the number in the system at 
time t. The event that there are j aircraft in the system is a union of the events that there 
are j arrivals when either the servers are either full, empty or less than full and the queue 
is empty or there are j - 1 arrivals when there is a queue of length 1, etc. Using this detail 
we have the following expression for the number of aircraft in the system 

Also, note that the number of arrivals in the interval [t, t + T,] and the number in the queue 
are independent events. Thus, for any m and L, the conditional probability above becomes 

P(A(T,) = m, N ( t )  = L) 
P(A(T,) = mlN(t) = L) = 

P ( N ( t )  = k) 

= P(A(T,) = m) - P(A(T') = m)P(N(t)  = k) - 
P ( N ( t )  = I C )  

The probability given in Equation 3 is simply the probability that there are m Poisson 
arrivals in an interval of length T,. Substituting Equation 3 into Equation 3 and simplifying 
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yields 

This gives us an infinite set of equations that can be solved at discrete times. Assuming that 
the queue is initially empty, this set of equations can then be re-written in the matrix-vector 
form P(t + T.) = FP(t).  The vector P is the probability vector, where the j t h  element 
is the probability that j - 1 customers are in the system. This equation can be solved by 
setting t = kT,, and using the initial condition = P(0) = [ l o  0 0 : . . .I*. Re-writing the 
probability vector, we get i)(k) = p(kTs) = [Po(k) Pl(k). ..I. Hence, Eq. 4 can be written 
as the infinite dimensional difference equation, 

- -_ P(kTs) = FP((k - 1)T.) (5 )  

where F is given below for the n = 2 case as 

The solution to this set of equations is 

P(kTs) = FkPo (7) 

This set is solved approximately by choosing a sufficiently large dimension of F such that 
the significant probabilities of the system are captured. 

After solving for the time-varying probabilities, the mean number in the system at 
any time increment k is calculated. The mean number in the system is defined as m(k) = 
Cjm,qjPj(k). The mean number in the system may be broken up into two components, 
those found in service at time-increment k, m,, and those in the queue awaiting service, 
mg. Hence, m(k) = m,(lc) + m ~ ( k ) ,  where m g ( k )  is the mean number in the queue and 
ms(k) is the mean number in service. The mean number in service can be found in Cooper 
[3] to be 

( 8 )  
j = O  j=n 

The first summation in Eq. 8 arises from the recognition that if the number of customers 
in the system is less than the number of servers, then all customers are being served. The 
second summation exists due to the realization that if there are more customers in the 
system than there are servers, then all servers will be busy. The resulting mean number in 
the queue is then 
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Using Equation 9 and replacing 00 by NF,  where NF is the dimension of F used for cal- 
culation, the mean number in the queue can be calculated. The expected waiting time or 
delay as a function of time can be found by simply applying Little's Formula [3]. Little's 
Formula provides a simple relation between the waiting time in the queue and the number 
in the queue. Mathematically, Little's Formula is L = XW where L is the length of the 
queue, X is the arrival rate of customers into the system, and W the waiting time in the 
queue. The waiting time in the queue then becomes 

3.2 Exponential Service Times 

A second model that has been applied to analyze the aircraft scheduling problem is one 
where the service times are exponentially distributed with a mean equal to the service time 
calculated from the separation matrix. A queue that has Poisson arrivals, exponential ser- 
vice times, and n servers is referred to as an M / M / n  queue [3]. The Kolomogrov differential- 
difference equations, which describe a birth and death process, were numerically solved to 
get the probabilities for an n server queue with a constant arrival rate X j  = X for all j and 
service rates 

j p  j =0,1 ,  ..., n- 1 

The service rate denotes how quickly customers would complete service in a specified period 
of time. The birth and death differential-difference equations are then 

pj(t) = Aj-lPj-l(t) - ( A j  + pj)pj( t )  + pj+lPj+l(t) (12) 
Since this is an infinite set of first-order differential equations, we can write this in the form 
j ( t )  = GP(t), P(0)  = Po. The matrix G in this case is a tri-diagonal matrix of the form 
(for R = 2) 

G =  - (A+%)  2p 8 8 1  0 (13) 

0 
-. 

2P 

The elements Pj(t) of the vector P( t )  are simply the probabilities that j - 1 customers 
are in the system at time t. Again, we are only able to approximate the infinite set of 
differential-difference equations by a finite set when solving the system numerically. Hence, 
one needs to select the dimension of G large enough that the important features of the 
queuing dynamics are realized. 

The solution to the differential equation ?(t) = GP(t),  P(0) = Po is 

F(t )  = PP-J  
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Once the probabilities are found according to Eq. 14, the mean number in the queue and 
hence the mean waiting time in the queue are found using Eq. 10 and replacing k by t .  
One can see in Figure 1 that the waiting time in the queue for the M/M/2 queue is almost 
twice that when compared to the M/D/2 queue for the same service time, arrival rate, 
and number of servers. The reason for this difference is attributed to the large standard 
deviation of the exponential distribution. Consider an exponential distribution with rate cy. 
The mean is then l / a  and the variance is l /a2.  This results in a large la deviation, where 
we would expect to see the service times between 0 and 2/a. Note for a purely deterministic 
service time, the variance is zero. If we consider the service times to determined by the 
separation matrix, the variance in arrival traffic can be easily computed. After converting 
the separation matrix from distances to speeds using a common approach speed of 150 kts 
and the t r d c  mix above, the standard deviation is found to be 19.3 seconds, compared 
to 82.8 secods for the exponential distribution. The large variance of the exponential 
distribution introduces a much wider range of service times than what occurs in practice. 
The effect of these service times is to introduce additional delay into the system that is not 
present. Hence, the deterministic service time queue better suits our results. 

4 Comparison of Runway Allocation Strategies 

Due to the complex nature of scheduling arrival aircraft, simulation provides a valuable tool 
to determine the feasibility of a particular scheduling dgorithm. In this section, we discuss 
the merits and drawbacks for several runway allocation methods. First, the two runway 
docation problem will be discussed, followed by the three runway problem. Three different 
traffic densities will be analyzed for each problem: a period of light traffic (two runway case 
only), a period of moderately heavy traffic where the airport is operating near, but below 
capacity, and a period where the traffic is heavy enough that the airport is operating above 
capacity. The purpose is to show that selection of a given runway allocation method varies 
with fhe arrival rate of aircraft into the airport. -. 

4.l Two Runway Allocation Problem 

The two runway problem is one that is quite common at many airports which operate at 
least two independent runways. Runways that operate independently of one another have 
sufficient separation between their center lines such that aircraft landing simultaneously do 
not have to be “staggered.” 

It is assumed for all scheduling strategies that the aircraft arrive from two different 
directions. Each arrival stream’s estimated times of arrival (ETAS) are modelled by a 
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Figure 1: Mean Waiting Times for M/D/2 and M/M/2 Queues 
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Poisson distribution with a mean of X aircraft per hour per runway, which gives a total 
arrival rate of 2X ac/hr using the reproductive property of the Poisson process. Each arrival 
direction has a “preferred” runway that an aircraft desires to land on. Due to the common 
arrangement of parallel runways, we will nominally call the runways “left” and “right” 
or “L” and “R”. The arrival direction, and hence the preferred runway, was determined 
by a random draw from a standard normal distribution. The capacity of each runway is 
approximately 43.5 aircraft per hour using the separation matrix and (for simplicity) a 
common approach speed of 150 knots calibrated airspeed. The traffic mix is assumed to 
consist of 70% large aircraft, 20% heavy, and 10% small. The performance index to be 
considered is the average delay of each aircraft, since minimizing the delay per aircraft 
results in a maximum throughput. The delay per aircraft is measured with respect to an 
earliest estimated time of arrival (ETA), such that an aircraft that arrives at its “fast” ETA 
has zero delay. It is further assumed that each aircraft can be expedited by 60 seconds 
(i.e. ETAfast = ETA - 60) and slowed down as much as needed to meet the minimum 
spacing requirements of the separation matrix. The flight time to both runways is assumed 
to be identical. Furthermore, the first aircraft landing on each runway is constrained to 
land at its nominal time of arrival in order to prevent negative landing times. The results 
presented are the average for “batch” runs comprised of 500 different streams that are each 
90 minutes long. All scheduling strategies for a given arrival rate use the same traffic. 

4.1.1 Light Traffic 

For the light traffic case, the total arrival rate is taken to  be 32 ac/hr (or 16 ac/hr/runway). 
In queuing theory, the “utilization rate” is used to demonstrate the how “busy” a system 
is [3]. The utilization rate is defined to be p = where p is the utilization rate, X is 
the arrival rate, It is the number of servers, and p IS the service rate. If we substitute the 
service time for the service rate, the utilization becomes p = %. Therefore, for th& case of 
light traffic, p = .37, which means that the runways will be occupied 37% of the time. We 
compared three means of allocating runways for the arrival traffic. The first was to land 
each aircraft on its preferred runway. This is the easiest scheduling algorithm to implement, 
since no decision is made to cross runways. Furthermore, this is a baseline that allows us 
to later show improvements in delay as compared to this algorithm. By constraining the 
aircraft to land on their preferred runways, the queue is considered as two separate queues, 
each feeding a particular service. This is identical to a supermarket with two checkouts, 
each with its own line, where the customers, upon entering the line, cannot go to another 
register. The second is to allow an aircraft to switch from its preferred runway whenever 
the aircraft’s delay on the alternate runway is less than its delay on its preferred runway. 
This queue is unlike the one above in that there is only one line, but the customer chooses 
the server that becomes open the soonest (Le. the baggage check-in counter at the airport.) 
This plan will be referred to as unconstrained crossovers. The final allocation strategy is 
to land the heavy and small aircraft on runways which are designated for this weight class, 
and to place the large aircraft on the runway where the delay for it is the smallest. The 

y ’ 
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Table 1: Light Traffic Comparison for 2 Runways 

results of these three approaches are given in Table 1. From Table 1 we conclude that an 
aircraft is likely to be expedited, even in the case where the airplane cannot cross runways 
(recall that 60 seconds of delay corresponds to the aircraft arriving at its nominal ETA). 
The improvements made by allocating runways are 50% to 65% percent better. However, 
from an operational point of view, there is no real advantage for optimizing the landing 
sequence in order to reduce the delay per aircraft since the delay is already small. This is 
due to the fact that the average separations between arrivals are large, hence there is little 
tendency for bunching to occur. 

In order to get a feel of how accurate the numbers for the no crossover and the unlimited 
crossover cases, we can compare them to an M/D/l and an M/D/2 queue respectively. In 
order to calculate the expected delay per aircraft over a given time period, the “average” 
value of Equation 10 is needed. To calculate this, note that the waiting time is constant 
over a service period. Therefore, the average value of the expected waiting time curve is 
then 

N 

k=O N 

Using Equation 15 for an M/D/l queue with an arrival rate of 16 ac/hour and a service 
time of 82.8 sec, the average delay is found to be 0.3955 min/ac, which agrees well with 
the no crossover case in Table 1. The unlimited crossover case shows the same trend. The 
predicted delay using an M/D/2 queue is 0.1174 min/ac while the simulation produced 
a delay of 0.1847 min/ac. Since the differences between the simulation and the predicted 
resalts are nearly identical, these-quantities appear to give a suitable representation of what 
can be expected when the traffic is light. 

4.1.2 Moderate Traffic 

The case where there is moderately heavy traffic allows us to investigate into what happens 
when the airport is operating under a fairly high arrival rate, but is still not at its capacity. 
This allows for fairly tight bunching to occur as well as periods where the traffic may be 
light for several minutes. It is assumed that the total arrival rate is 72 ac/hr, putting the 
airport at about 84% capacity. Results are summarized in Table 2. 
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Table 2: Moderate Traffic Comparison for 2 Runways 

Four different scheduling algorithms were investigated. The first method is to again 
land each aircraft on its preferred runway (Le. no crossovers allowed). This serves as a 
baseline strategy used determine how much improvement in delay can be obtained. The 
second strategy allowed an aircraft to cross from its preferred runway to the alternate run- 
way if the aircraft could land at an earlier time on the alternate. The first two strategies 
correspond to- the analytical models that are considered. Two additional algorithms also 
are considered. One of the methods attempts to reduce the number of crossovers. Because 
crossovers increase the workload of the controllers, one wants to be able to reduce delay 
without imposing a higher workload on them. Therefore, this particular algorithm permit- 
ted the aircraft to crossover to the alternate runway if one of two conditions were satisfied: 
a) the aircraft’s delay on the alternate runway was less than on the preferred and the 
sequence was defined to be “favorable” or b) the aircraft’s delay on the alternate runway 
was less than that on its preferred runway by some predetermined amount. The second 
alternative method is to see what improvements in delay may be realized by separating 
some of the traffic so it does not interact. Upon inspection of the separation matrix, it is 
evident that the element with the largest value is the case where a small aircraft trails a 
heavy. The goal is to then eliminate this sequence of aircraft. Thus, the strategy is to send 
the heavy aircraft and s m d  aircraft to separate runways and to then schedule the large 
aircraft to the runway where its delay was lowest. 

The first scheduling strategy employed was to restrict each incoming aircraft to land 
on its preferred runway. This is employed as a baseline in order to find improvements in the 
runway balance (i.e. are the same amount of aircraft landing on each runway) and in the 
delay per aircraft. The aircraft, as stated above, entered from the appropriate direction, and 
then were scheduled to the corresponding runway. For 500 runs of 108 aircraft, the mean 
delay was 2.59 min/ac. The average number of aircraft landing on each runway was 54.27 
and 53.73 on the left and right respectively. Note that the amount of traffic is nearly evenly 
split between the runways. This is expected since the runway assignment is based upon the 
sign of a draw from a normal distribution. For analytical purposes, this is modelled by an 
M/D/1 queue with the arrival rate equal to 36 ac/hr and a constant service time of about 
83 seconds. The expected delay curve is shown in Figure 2. Using Eq. 15, we find that the 
average value of the waiting time is 2.53 min. This is in agreement with the results of the 
simulation. 

The second strategy was to d o w  the aircraft to crossover when the delay on the 
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Figure 2: Mean Waiting Time for M/D/l Queue with Moderate Traffic 
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alternate runway was less than on the preferred. This case was studied by Vandevanne 
[2] using traffic statistics from the Dallas-Fort Worth airport. Vandevanne studied the 
reduction in delay relative to the preferred runway case that was discussed above. His 
analysis looked at the expected waiting time in the steady state for M/D/n queues as 
compared to an M/D/ l  queues. He shows that the delay for the n runway case is reduced 
by a factor of approximately l/n as compared to the single runway case. Using this analysis 
as a starting point, a curve showing how the relative delay evolves as a function of time was 
generated. Figure 3 shows that the delay of an M/D/2 queue relative to an M/D/l queue 
with the same utilization. The arrival rate used is the same in this section for both queue 
types. Calculating the average value of the curve in Figure 3, an improvement of about 
52% would be expected by allowing an aircraft to choose the runway with the lowest delay 
for it. 

Simulation of a batch run of 500 streams shows that the average delay is halved as 
compared to the no crossover case. The delay per aircraft turns out to be 1.34 min/ac with 
an average of 53.90 aircraft landing on the left runway and 54.10 aircraft landing on the 
right. This shows that the effect of crossing runways in order to minimize the individual 
delay also will tend to balance the runway throughput. The average delay that one expects 
to see can be found using Eq. 15 derived above. Using this we find that the average delay 
should be about 1.31 min/ac. E’urthermore, the simulated delay for the unlimited crossover 
case is 52% that of the no crossover case. Vandevanne also states that about one- half of the 
traffic will cross runways in order to reduce their delay. Our simulation shows that this is 
nearly the case, as 44.85% of the traffic switched runways in a single stream of 108 aircraft. 
The reason for the large number of crossovers can be attributed to the fact that an aircraft 
has a 50 percent probability of having its preferred runway be the one for which its delay 
is minimized. 

The next approach that was implemented placed restrictions on when an aircraft could 
crossover. An aircraft was allowed to crossover if one of the following logic statements were 
true:.a) the aircraft had a lower delay on the alternate runway and the aircraft formed a 
‘‘faTorable” sequence or b) the scheduled time of arrival (STA) on the alternate runway is 
less than the STA the on the preferred runway by a fixed amount (taken to be 60 seconds). 
A favorable sequence is defined as a sequence that is not one of the following pairs: {heavy, 
large}, {heavy, small), or (large, small). This essentially prohibits the use of the elements 
in the separation matrix that are above the diagonal. These are the elements that have 
the largest value, hence adding the most delay to the landing sequence. The purpose of 
having the “OR” logic is that if the improvement is significant enough, it will offset any 
penalty that may result from an unfavorable sequencing. Simulation showed that the delay 
per aircraft was 1.47 min./ac and each runway landed an average of 54 aircraft. Similar 
to the unlimited crossover case, the runways are balanced, but the delay is increased by 
about 8 seconds per aircraft on each runway. The increased delays can be attributed to 
the fact that there are fewer crossovers, hence there are aircraft that are not landing in 
their “optimal” slot. Furthermore, there are still instances where the sequencing is not 
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Figure 3: Ratio of 2 Runway Delay to 1 Runway Delay for Moderate Traffic 
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favorable as we have defined it, hence the larger separations on average will require larger 
delays. However, the number of runway crossings dropped to 23.12% of the traffic. The 
next scheduling algorithm studied was to split the heavy and small aircraft and to schedule 
them to separate runways. The large aircraft into the stream are subsequentially scheduled 
to the runway which minimizes the delay for the particular aircraft. The small aircraft were 
sent to the left runway and the heavies were sent to land on the right runway. The large 
aircraft go to  the runway where the delay for that particular aircraft is the lowest. If the 
delay is the same on each runway for an aircraft then it lands on the runway where the 
sequence is defined as favorable. Here, we are trying to avoid putting the aircraft behind a 
heavy, when it could be placed behind a small or large aircraft. However, if there still is no 
preference after this test (e.g. a large aircraft landed on each runway preceding the current 
large aircraft), then the aircraft either goes to the runway where there are fewer aircraft 
or to the runway where the last aircraft was not scheduled (e.g. if the previous aircraft 
landed on the right runway, then land on the left runway). The study of 500 runs shows 
that the average delay per aircraft is 1.3140 min/ac The average runway throughputs are 
55.85 aircraft landing on the left and 52.15 on the right. In both cases, the improvement 
in delay is significant as compared to the no crossover case, and a modest improvement 
over the unlimited crossover case. The improvement can be attributed to an increase in 
the capacity for each of the runways. Since heavy and small aircraft are not in the same 
stream, the large separations between these weight classes are eliminated, hence the capacity 
increase. This method, however, had the largest number of crossovers with about 50.17% 
of the traffic switching runways. The reason for this is simple. Since we know that every 
aircraft entering the system wants to land on a preferred runway, it stands to reason that 
there is a 50% probability that the assigned runway for each heavy and small aircraft is 
its preferred runway. Therefore, one-half of the aircraft that comprise these weight classes 
have to change runways to land on the appropriate runway. Furthermore, one-half of the 
large aircraft will switch in order to reduce delays based upon the argument given in the 
section above. 

4.1.5 Heavy Traffic 

This section addresses the problem of what occurs in the two runway case when the airport 
is operating above capacity. An interval of 90 minutes is being considered, although in 
practice an airport never operates under such conditions for periods this long. The reason 
for choosing such a long interval is to keep continuity with the light and moderate traffic 
densities discussed above. The arrival rate is 96 ac/hr, and the average delays are for 500 
runs of 144 aircraft. The scheduling algorithms are the same as considered for the moderate 
traffic. The results for the heavy trafFic case are summarized in Table 3. 

The no crossover case is again the worst case scenario to which all other scheduling 
methods are compared. The average delay expected from an M/D/1 queue with an arrival 
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Table 3: Heavy Traffic Comparison for 2 Runways 

rate of 48 ac/hr and an service time of 82.8 sec is 7.4027 min/ac. The simulation had an 
average delay of 8.5629 min/ac. The difference between the expected and the simulated 
delay is attributed to the approximation of the infinite-dimensional system by one that 
is finite. To begin with, since the arrival rate is larger than the service rate, the system 
will never reach steady-state. This means that if the system were to  run for an infinite 
amount of time, the queue length would become infinite. Therefore, by estimating the 
infinite-dimensional system with one that is finite, large errors have been introduced in 
the expected waiting time calculations. However, what we are really looking for here is 
the improvement in delay relative to the M/D/1 case; therefore, based on our previous 
experience, we would expect to see the same relative improvement below. 

In the unconstrained crossover case, an improvement of 18% in the delay should be 
realized when compared to the no crossover case. The expected delay found using the 
M/D/2 queue is 6.1517 min/ac. The simulation returned a result of 6.8800 min/ac, which 
is almost a 20% improvement over the no crossover case. Figure 4 shows how delay is 
reduced relative to the single runway case. Although the computed delays are not close to 
the expected delay from queuing theory, the relative improvement is reasonably close. 

The next scheduling approach is the constrained crossover case discussed in the section 
above. As expected, the average delay is higher than that for the unlimited crossover case. 
This strategy had a delay 7.0772 min/ac as compared to 6.8800 min/ac for the unlimited 
crossovers. The number of crossovers as compared to the moderate traffic is also slightly 
higher. With the increase in traffic, 26% of the aircraft switched runways. This increase is 
associated with the decreased mean separation in the ETA’S of the aircraft. 

The final allocation process was to separate the heavy and small traffic so that each 
lands on separate runways. The delay was found to be 6.1792 min/ac. This is significantly 
less than the no crossover case. In fact, this demonstrates the importance of keeping heavy 
and small aircraft on separate runways when the traffic is very heavy. The reduction in 
delay is attributed to the fact that the heavy-small sequence is avoided. Furthermore, the 
large aircraft, which make up 70% of the total traffic, land wherever the delay is minimized, 
hence this likely accounts for a part of the reduction in the delay. Approximately 49% of 
the traffic switched runways. 
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Figure 4: Ratio of 2 Runway Delay Relative to Single Runway for Heavy Traffic 
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Allocation Strategy 
No Crossovers 
Unconstrained Crossovers 
Separate Heavies and Smalls 

Table 4: Moderate Tr&c Comparison for 3 Runways 

Ave Delay, min/ac % Crossovers 
2.7008 0.0 
0.9249 59.38 
0.9399 66.59 

4.2 Three Runway Allocation Problem 

The three runway case is considered since many larger airports such as Dallas-Fort Worth 
and Denver International have more than two runways that may be used simultaneously. 
Only heavy and moderate traffic are considered as only minimal benefits are realized from 
optimizing runway allocations for light traffic. The most practical means of allocating 
runways in the light traffic case is to land each aircraft on its preferred runway. The 
underlying assumptions for the three runway case are basically the same as for the two 
runway case. The three runways are labelled as “R”, “L”, and “C” to denote the right, left 
and center runways respectively. The preferred runway is chosen from a uniform distribution 
instead of a normal distribution as in the two runway case. This is done to take advantage 
of the symmetry of the uniform distribution. 

4.2.1 Moderate Traffic 

The case of a moderate traffic flow into the airport is discussed first. Three scheduling 
strategies are examined. The first is the no crossover case, where each aircraft is assigned 
to its preferred runway, and the unlimited crossover case where an aircraft is free to switch 
runways whenever its delay is lower on the alternate runway than the delay on the preferred 
runway. The third way of scheduling is to land heavies and smalls on separate runways, 
while assigning the large aircraft to any of the three. This is a direct descendant of the 
two-runway strategy where the heavy and small aircraft were landed on separate runaways. 
Furthermore, it is assumed that the total arrival rate is 108 ac/hr and the runway capacity 
is 130 ac/hr. Results are summarized below in Table 4. 

The no crossover case is again compared directly to an M/D/l queue that has an arrival 
rate of 36 ac/hr and a service time of 82.8 sec. As such, we expect a delay of 2.5247 min/ac. 
Simulation, however, yielded a delay of 2.7008 min/ac. The difference is attributed to an 
uneven distribution of aircraft on each runway as well as not enough data in the sample 
space to get adequate convergence. The unrestricted crossover case performed as expected. 
Figure 5 shows the ratio of waiting time for an M/D/3 to an M/D/1 queue over time. Note 
that the delay for a single server queue increases faster than for the three server queue given 
the same utilization. It is expected that the delay will be 35% of the no crossover delay 
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Time, hrs 

Figure 5: Ratio of 3 Runway Delay to 1 Runway Delay for Moderate Traffic 

for 20 minutes of traffic. The delay for the unlimited crossover case is 0.9249 min/ac. The 
delay that one would expect from the M/D/3 queue is 0.8544 min/ac. Again, the delay is 
higher than what is expected, but still is 34% of the no crossover delay. One would expect 
to see 2/3 of the traffic crossover to an alternate runway since the probability of an aircraft 
of having its preferred runway be the runway which has the lowest delay is 1/3. The actual 
crossover rate was 59.4%, less than the 67% that would be anticipated. Yet, this is also 
consistent with what was observed for the two runway/moderate traffic case done above. 
The next allocation method is to land the heavy aircraft and the small aircraft on their own 
runways. Then the large aircraft are assigned to any of the 3 runways. To be consistent 
with the allocation strategy for the two runway case, the large aircraft landed on the runway 
that minimized the delay for an individual aircraft. Simulation yielded a delay of 0.9399 
min/ac with 66.6% of traffic crossing over. This is similar to what wils observed on the two 
runway case with moderate traffic, but with a very small increase in the delay. 
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Allocation Strategy Ave Delay, min/ac % Crossovers I 
No Crossovers 8.7364 0.0 
Unconstrained Crossovers 6.4254 65.69 
Separate Heavies and Smalls 4.9582 66.79 

4.2.2 Heavy Traffic 

For heavy traffic, the arrival rate was increased to 144 ac/hr for a duration of 90 minutes. 
The three strategies employed are the same as for the moderate traffic. Again, comparisons 
are made to results obtdned using queuing theory in order to predict the delays as well as 
the improvement in the delay. Table 5 summarizes the results of this section. 

For the case of no crossovers, the expected delay is 7.4027 min/ac. However, simulation 
once again had a higher delay, found to be 8.7364 min/ac. The reason for the discrepancy 
is as discussed above in the two runway/heavy traffic study. The unlimited crossover case 
sees a reduction in the delay as expected. The average delay from the simulation is 6.4245 
min/ac with 65.7% of the traffic crossing over. Yet, the expected delay is 5.5834 min/ac. 
Furthermore, one would expect the ratio of the delays to be about 0.7392 (Figure 6). Note 
the behavior of the curve in Figure 6. The relative delay is increasing for most of the rush 
period, before reaching a maximum, then beginning to decrease. This implies that the 
delay for the three server queue is growing faster than the delay for a single server queue 
after start-up. The delays in the single-server queue then begin to grow faster than for the 
three-server queue. The ratio of the simulated delays is 0.7354, and our simulations agree 
with this value. A 26% delay reduction is realized by allowing the aircraft to land on the 
first runway that becomes available for it. 

The find strategy employed is to  land the heavy and small aircraft on separate runways 
an&io land the large aircraft an whichever runway its delay is the smallest. The delay 
cdculated from the simulation is 4.9582 min/ac, with 66.78% of the aircraft switching 
runways. As with the two runway set-up with heavy traffic, this instance is similar in 
terms of relative performance. The separation of the weight classes removes some of the 
components of the separation matrix that result in large delays. This is even more important 
when the traffic is heavy, since bunching is widespread. 
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Figure 6: Ratio of 3 Runway Delay to 1 Runway Delay for Heavy Traffic 
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5 Conclusions 

Several methods for scheduling arrival aircraft to multiple runways are studied. We have 
shown that the transient analysis of an M/D/n queue is accurate in predicting the average 
delay per aircraft when the runway capacity is known. Furthermore, significant improve- 
ments are realizable when one considers the arrival rate in choosing a runway allocation 
strategy. The greatest reduction in delay for both the two and three runway cases for heavy 
traffic are obtained by separating traffic such that the heavy and small weight classes do 
not interact. For more moderate traffic, one may either split the traffic by weight class or 
crossover when there is an improvement in delay. Light traffic simply is scheduled to the 
preferred runway for the aircraft since the average separation is large enough that most 
aircraft are likdy to be expedited. 
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